Matematika

Pertanyaan

Diketahui matriks-matriks
T = [tex]\left[\begin{array}{ccc}-3a&&a-2b\\b+c&&2d+c\\e-2d&&e-3f\end{array}\right][/tex]
R = [tex]\left[\begin{array}{ccc}8&4&0\\2&10&-1\\\end{array}\right][/tex]

a) Tentukan transpos dari matriks T
b) Jika [tex]R^t[/tex] = T, tentukanlah nilai a, b, c, d, e, dan f

Tolong pakai caranya

2 Jawaban

  •          [-3a        b + c     e - 2d
    a) T =[a - 2b    2d + c   e - 3f]

    b) [8   2]     [-3a      a - 2b]
        [4  10] = [b + c   2d + c]
        [0  -1]     [e - 2d  e - 3f]

    - 3a = 8
    a = - 8/3

    2 = - 8/3 - 2b
    14/3 = - 2b
    b = -7/3

    c - 7/3 = 4
    c = 19/3

    2d + c = 10
    2d + 19/3 = 10
    2d = 11/3
    d = 11/6

    e - 2d = 0
    e - 22/6 = 0
    e = 22/6

    e - 3f = - 1
    22/6 + 1 = 3f
    28/6 = 3f
    f = 28/18


  • a)
    [tex]T ^{t} = \left[\begin{array}{ccc}-3a&b+c&e-2d\\a-2b&2d+c&e-3f\end{array}\right] [/tex]
    b)
    [tex]R ^{t} = \left[\begin{array}{cc}8&2\\4&10\\0&-1\end{array}\right] = T = \left[\begin{array}{cc}-3a&a-2d\\b+c&2d+c\\e-2d&e-3f\end{array}\right][/tex]
    diperoleh persamaan:
    -3a = 8 ...(i)
    a - 2b = 2 ... (ii)
    b + c = 4 ... (iii)
    2d + c = 10 ...(iv)
    e - 2d = 0 ... (v)
    e - 3f = -1 ...(vi)
    maka
    -3a = 8 ...(i)
    a = 2 + 2b ...(ii)
    (i)(ii) substitusi
    -3(2+2b) = 8
    -6 + 6b = 8
    6b = -14
      b - 14/6 = -2[tex] \frac{2}{3} [/tex]
    (iii) b + c = 4
         2[tex] \frac{2}{3} [/tex] + c = 4
    (i) a = 2b + 2
          = 2(-2[tex] \frac{2}{3} [/tex]) + 2
         = - 2[tex] \frac{2}{3} [/tex]
    (iii) b + c = 4
         -2[tex] \frac{2}{3} [/tex] + c = 4
         c = 4 + 2[tex] \frac{2}{3} [/tex]
    (iv) 2d + c = 10
         2d + 6[tex] \frac{2}{3} [/tex] = 3[tex] \frac{1}{3} [/tex]
           d = 1[tex] \frac{2}{3} [/tex]
    (v) e - 2d = 0
        e - 2(1[tex] \frac{2}{3} [/tex] = 0
        e = 3[tex] \frac{1}{3} [/tex]
    (vi) e - 2f = -1
         3[tex] \frac{1}{3} [/tex] -3f = -1
         f = 4[tex] \frac{2}{3} [/tex]

Pertanyaan Lainnya