Diketahui matriks-matriks T = [tex]\left[\begin{array}{ccc}-3a&&a-2b\\b+c&&2d+c\\e-2d&&e-3f\end{array}\right][/tex] R = [tex]\left[\begin{array}{ccc}8&4&0\\
Matematika
Anugrahh
Pertanyaan
Diketahui matriks-matriks
T = [tex]\left[\begin{array}{ccc}-3a&&a-2b\\b+c&&2d+c\\e-2d&&e-3f\end{array}\right][/tex]
R = [tex]\left[\begin{array}{ccc}8&4&0\\2&10&-1\\\end{array}\right][/tex]
a) Tentukan transpos dari matriks T
b) Jika [tex]R^t[/tex] = T, tentukanlah nilai a, b, c, d, e, dan f
Tolong pakai caranya
T = [tex]\left[\begin{array}{ccc}-3a&&a-2b\\b+c&&2d+c\\e-2d&&e-3f\end{array}\right][/tex]
R = [tex]\left[\begin{array}{ccc}8&4&0\\2&10&-1\\\end{array}\right][/tex]
a) Tentukan transpos dari matriks T
b) Jika [tex]R^t[/tex] = T, tentukanlah nilai a, b, c, d, e, dan f
Tolong pakai caranya
2 Jawaban
-
1. Jawaban MathSolver74
[-3a b + c e - 2d
a) T =[a - 2b 2d + c e - 3f]
b) [8 2] [-3a a - 2b]
[4 10] = [b + c 2d + c]
[0 -1] [e - 2d e - 3f]
- 3a = 8
a = - 8/3
2 = - 8/3 - 2b
14/3 = - 2b
b = -7/3
c - 7/3 = 4
c = 19/3
2d + c = 10
2d + 19/3 = 10
2d = 11/3
d = 11/6
e - 2d = 0
e - 22/6 = 0
e = 22/6
e - 3f = - 1
22/6 + 1 = 3f
28/6 = 3f
f = 28/18 -
2. Jawaban yoesamudra
a)
[tex]T ^{t} = \left[\begin{array}{ccc}-3a&b+c&e-2d\\a-2b&2d+c&e-3f\end{array}\right] [/tex]
b)
[tex]R ^{t} = \left[\begin{array}{cc}8&2\\4&10\\0&-1\end{array}\right] = T = \left[\begin{array}{cc}-3a&a-2d\\b+c&2d+c\\e-2d&e-3f\end{array}\right][/tex]
diperoleh persamaan:
-3a = 8 ...(i)
a - 2b = 2 ... (ii)
b + c = 4 ... (iii)
2d + c = 10 ...(iv)
e - 2d = 0 ... (v)
e - 3f = -1 ...(vi)
maka
-3a = 8 ...(i)
a = 2 + 2b ...(ii)
(i)(ii) substitusi
-3(2+2b) = 8
-6 + 6b = 8
6b = -14
b - 14/6 = -2[tex] \frac{2}{3} [/tex]
(iii) b + c = 4
2[tex] \frac{2}{3} [/tex] + c = 4
(i) a = 2b + 2
= 2(-2[tex] \frac{2}{3} [/tex]) + 2
= - 2[tex] \frac{2}{3} [/tex]
(iii) b + c = 4
-2[tex] \frac{2}{3} [/tex] + c = 4
c = 4 + 2[tex] \frac{2}{3} [/tex]
(iv) 2d + c = 10
2d + 6[tex] \frac{2}{3} [/tex] = 3[tex] \frac{1}{3} [/tex]
d = 1[tex] \frac{2}{3} [/tex]
(v) e - 2d = 0
e - 2(1[tex] \frac{2}{3} [/tex] = 0
e = 3[tex] \frac{1}{3} [/tex]
(vi) e - 2f = -1
3[tex] \frac{1}{3} [/tex] -3f = -1
f = 4[tex] \frac{2}{3} [/tex]